
iTech Analytic Solutions

LmÉPï C£Á°nPï ¸À®ÆµÀ£ïì

No. 9, 1st Floor,
8th Main, 9th Cross,

SBM Colony, Brindavan Nagar,
Mathikere, Bangalore – 560 054

Email: itechanalytcisolutions@gmail.com
Website: www.itechanalytcisolutions.com

Mobile: 9902058793

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 2

Chapter 3

The VBA Editor

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 3

The VBA Editor Screen

The easiest way to access the Visual Basic Editor in Excel is to press the key combination ALT-F11 (ie. press

the ALT key, and while this is pressed down, press F11). You will be presented with the Visual Basic Editor,

similar to the image below (note that your normal Excel window will remain open behind this window).

There are a number of windows that can be viewed in the Excel VBA Editor. These are controlled via

the View menu at the top of the VBA Editor window. The individual windows are described below.

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 4

The Project Explorer

The Project Explorer opens up on the left of the VBA Editor (as shown in the above image). This window

provides you with an index of all Visual Basic files, linked to all open Excel workbooks. These consist of :

A file (or a worksheet object), linked to each worksheet of your Excel workbook and Additional files

(called Modules), which contain user-defined code and are not linked to any specific worksheet

If you want to write a macro that is to be linked to a specific worksheet, then this code should be entered into

the relevant worksheet object. If your code is more general, you may want to create a new module to hold

this.

To show the project explorer click the Project Explorer icon or Press CTRL + R on the keybord. The Project

Explorer allows you to "explore" the VBA code for all Excel workbooks you have open. VBA codes are written

in "modules" in the Project Explorer.

There are 5 different types of modules:

1. Standard Modules

 Also called simply Code Modules or just Modules

 Most of the VBA codes are written here

 Basic macros and Custom function (User Defined Functions) should be in these modules only

 A workbook's VBA Project can contain as many standard code modules . This makes it easy to split

the procedure into different modules for organization and ease of maintenance

For example, put all the database procedures in a module named DataBase, and all the mathematical

procedures in another module called Math. As long as a procedure isn't declared with the Private

keyword, or the module isn't marked as private, any procedures can be called in any module from any

other module without doing anything special. .

2. Worksheet modules

 By Default there will be a module for each worksheet in the workbook

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 5

 If there is a code that is specific to a worksheet VBA code can be written in the worksheet module for

that worksheet

 But it is not recommended. Instead insert a module in a module folder and write your code there

3. Workbook module

 By default there will be a Workbook module in the Project

4. Form modules

 Forms can be created by creating Form Modules

 Codes are written for each objects (controls) in the Forms

5. Class modules

 Used in Advanced VBA Programming

 Used to create objects and object Models

 Used to trap events

 Used to raise events

 Used to create your own objects and object models

The Code Windows

In the Visual Basic Editor image above, the code window for the Worksheet, Sheet1, is displayed (although it

contains no VBA code at present).

The Code Window contains the VBA code for each individual worksheet object or module. Once a worksheet

object or module is opened up, you can type your VBA code directly into the code window and the VBA editor

assists you with typing in valid VBA code by highlighting lines that do not adhere to the VBA code rules, as

you type.

The code window for an existing worksheet object or module is opened up by double-clicking on the

worksheet or module name in the Project Window. Alternatively, you can create a new module as follows:

1. If you have more than one Excel workbook open, in the 'Project Window', select the workbook you want

to add a module to

2. Right click in the 'Project Window' and select Insert->Module

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 6

The Properties Window

The Properties Window lists the properties of the object that is selected in the Project Window at design

time (ie. not during run time). These properties vary, depending on the type of object that is selected (a

worksheet, workbook, module, etc).

The Immediate Window

View the Immediate Window by selecting View→Immediate Window from the Visual Basic Editor, or by

pressing CTRL-G. This window assists with the debugging of code by allowing you to execute individual lines

of code. This is done by typing in an individual line code and then pressing enter to execute it.

The Locals Window

View the Locals Window by selecting View→Locals Window from the Visual Basic Editor. This window

displays all local variables that are declared in the current procedure. It is split into columns which show the

name, value and type of each variable and updates these values automatically, as the programme is

executed. The Locals window is therefore useful for debugging VBA code.

The Watch Window

The Watch Window is also useful when debugging VBA code, as it shows the value, type and context of any

watch expressions that have been defined by the user.

The Watch Window can opened by selecting View→Watch Window from the Visual Basic Editor, or the

window appears automatically when a 'watch' expression is defined. to define a 'watch' expression:

1. Highlight an expression within the VBA code

2. From the Debug menu at the top of the VBA editor, select the option Quick Watch...

3. Click on Add

The menus at the top of the Excel Visual Basic Editor contain numerous options and commands for

designing, executing and debugging VBA code

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 7

Opening the VBA Editor

Following are different ways to open the VBA Editor

 Press Alt + F11 to open the VBA Editor

 Click on Developer Tab and Click on Visual Basic command

Closing the VBA Editor

Following are different ways to close the VBA Editor

 Press Alt + F4 to close the VBA Editor

 Click on the “X” button on the Top right of the screen

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 8

Working with Toolbars

Standard Toolbar

1. Takes you to Excel Window (Alt + F11)

2. Inserts a Procedure or Function

3. Saves the Workbook (Ctrl + S)

4. Cut's the selected Text (Ctrl + X)

5. Copy's the selected Text (Ctrl + C)

6. Paste's the copied text (Ctrl + V)

7. Find the text looking for (Ctrl + F)

8. Undo the previous action (Ctrl + Z)

9. Redo the previous action (Ctrl + Y)

10. Execute / Run the Procedure / UserForm (F5)

11. Stop / Break the Procedure executing (Ctrl + Break)

12. Reset the Executing Procedure

13. Go to Design Mode

14. Enable Project Explorer (Ctrl + R)

15. Enable Properties Window (F4)

16. Enable Object Browser (F2)

17. Enable Toolbox

18. Enable VBA Help

19. Show which line and column the cursor is placed in the Code

Edit Tool Bar

1. List Properties / Methods (Ctrl + J)

2. List Constants (Ctrl + Shift + J)

3. Quick Information about the selected parameters, arguments, etc. (Ctrl + I)

4. Parameter Information (Ctrl + Shift + I)

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 9

5. Complete the typed word (Ctrl + Space)

6. Indent the code (Tab)

7. Outdent the code (Shift + Tab)

8. Add / Remove Breakpoint (F9)

9. Comment the Block

10. Uncomment the Block

11. Add / Remove Bookmark

12. Go to Next Bookmark

13. Go to Previous Bookmark

14. Clear all the Bookmarks added

UserForm Toolbar

1. Bring the selected Control to Front (Ctrl + J)

2. Move the selected Control to Back (Ctrl + K)

3. Group the selected Controls

4. Ungroup the selected Controls

5. Align the selected Controls (Left, Center, Right, Top, Middle, Bottom, To grid)

6. Align the selected Control Center of the form (Horizontally, Vertically)

7. Make the selected Control same width, height or both

8. Zoom the form

Debug Toolbar

1. Design Mode

2. Execute / Run the Procedure / UserForm (F5)

3. Stop / Break the Procedure executing (Ctrl + Break)

4. Reset the Executing Procedure

5. Add / Remove Breakpoint (F9)

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 10

6. Step Into (F8)

7. Step Over (Shift + F8)

8. Step Out (Ctrl + Shift + F8)

9. Enable Local Window

10. Enable Immediate Window (Ctrl + G)

11. Enable Watch Window

12. Enable Quick Watch Window

13. Enable Call Stack (Ctrl + L)

Working with a Code Module

 VBA code is typed in the VBA Editor in what are called modules

 A VBA module resembles a Word document in both organization and typing

 The commands in the modules can be executed to control Microsoft Excel

 The VBA modules themselves are organized in what is called a VBA project

 A VBA project is defined as a collection of VBA modules and other programming elements

 When a new workbook file is created in Microsoft Excel, a new VBA project is automatically created and

associated with that workbook

 A workbook can contain only 1 VBA project

 VBA modules, code and other elements can be added to a VBA project when needed

 Macros are executed from the workbook they were created in

 The workbook should be opened to execute the code

Different ways of Running the Macro created

There are several ways to run a macro in Microsoft Excel. A macro is an action or a set of actions that you

can use to automate tasks.

Run the macro

1. Open the workbook that contains the macro.

2. On the Developer tab, in the Code group, click Macros.

3. In the Macro name box, click the macro that you want to run.

4. Do one of the following:

 To run a macro in an Excel workbook, click Run.

 To run a macro from a Microsoft Visual Basic for Applications (VBA) module, click Edit, and then on the

Run menu, click Run Sub/UserForm , or press F5.

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 11

Tip: You can also press CTRL+F8 to run the macro. You can interrupt the execution of the macro by pressing

ESC

Run a macro by pressing a CTRL combination shortcut key

1. If the Developer tab is not available, do the following to display it:

 Click the File tab, click Options, and then click the Customize Ribbon category.

 In the Main Tabs list, select the Developer check box, and then click OK.

2. On the Developer tab, in the Code group, click Macros.

3. In the Macro name box, click the macro that you want to assign to a CTRL combination shortcut key.

4. Click Options.

The Macro Options dialog box appears.

5. In the Shortcut key box, type any lowercase letter or uppercase letter that you want to use with the

CTRL key.

Note The shortcut key will override any equivalent default Excel shortcut key while the workbook that

contains the macro is open.

6. In the Description box, type a description of the macro.

7. Click OK to save your changes, and then click Cancel to close the Macro dialog box.

Run a macro by clicking a button on the Quick Access Toolbar

To add a button to the Quick Access Toolbar that will run a macro, do the following:

1. Click the File tab, Options, and then click Quick Access Toolbar.

2. In the Choose commands from list, select Macros.

3. In the list, click the macro that you created, and then click Add.

4. To change the button image of the macro, select the macro in the box to which it was added, and then

click Modify.

5. Under Symbol, click the button image that you want to use.

6. To change the name of the macro that is displayed when you rest the pointer on the button, in

the Display name box, type the name that you want to use.

7. Click OK to add the macro button to the Quick Access Toolbar.

8. On the Quick Access Toolbar, click the macro button that you just added

Run a macro by clicking an area on a graphic object

You can create a hot spot on a graphic that users can click to run a macro.

1. In the worksheet, insert a graphic object, such as a picture, clip art, shape, or SmartArt.

To learn about inserting a graphic object, see Add, change, or delete shapes.

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 12

2. To create a hot spot on the existing object, on the Insert tab, in the Illustrations group, click Shapes,

select the shape that you want to use, and then draw that shape on the existing object.

3. Right-click the hot spot that you created, and then click Assign Macro.

4. Do one of the following:

 To assign an existing macro to the graphic object, double-click the macro or enter its name in

the Macro name box.

 To record a new macro to assign to the selected graphic object, click Record, type a name for the

macro in the Record Macro dialog box, and then click OK to begin recording your macro. When you

finish recording the macro, click Stop Recording on the Developer tab in the Code group.

Tip You can also click Stop Recording on the left side of the status bar.

 To edit an existing macro, click the name of the macro in the Macro name box, and then click Edit.

5. Click OK.

6. In the worksheet, select the hot spot. This displays the Drawing Tools, adding a Format tab.

7. On the Format tab, in the Shape Styles group, click the arrow next to Shape Fill, and then click No Fill.

8. Click the arrow next to Shape Outline, and then click No Outline

Configure a macro to run automatically upon opening a workbook

If you record a macro and save it with the name "Auto_Open," the macro will run whenever you open the

workbook that contains the macro. Another way to automatically run a macro when you open a workbook is to

write a VBA procedure in the Open event of the workbook by using the Visual Basic Editor. The Open event

is a built-in workbook event that runs its macro code every time you open the workbook.

Create an Auto_Open macro

1. If the Developer tab is not available, do the following to display it:

 Click the File tab, and then click Options.

 In the Customize Ribbon category, in the Main Tabs list, select the Developer check box, and then

click OK.

2. To set the security level temporarily to enable all macros, do the following:

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 13

 On the Developer tab, in the Code group, click Macro Security

.

 In the Macro Settings category, under Macro Settings, click Enable all macros (not

recommended, potentially dangerous code can run), and then click OK.

Note To help prevent potentially dangerous code from running, we recommend that you return to any one of

the settings that disable all macros after you finish working with macros.

1. If you want to save the macro with a particular workbook, open that workbook first.

2. On the Developer tab, in the Code group, click Record Macro.

3. In the Macro name box, type Auto_Open.

4. In the Store macro in list, select the workbook where you want to store the macro.

Tip If you want a macro to be available whenever you use Excel, select Personal Macro Workbook. When

you select Personal Macro Workbook, Excel creates a hidden personal macro workbook (Personal.xlsb), if it

does not already exist, and saves the macro in this workbook. In Windows Vista, this workbook is saved in the

C:\Users\user name\AppData\Local\Microsoft\Excel\XLStart folder. If you can't find it there, it may have been

saved in the Roaming subfolder instead of Local. In Microsoft Windows XP, this workbook is saved in the

C:\Documents and Settings\user name\Application Data\Microsoft\Excel\XLStart folder. Workbooks in the

XLStart folder are opened automatically whenever Excel starts. If you want a macro in the personal macro

workbook to be run automatically in another workbook, you must also save that workbook in the XLStart

folder so that both workbooks are opened when Excel starts.

5. Click OK, and then perform the actions that you want to record.

6. On the Developer tab, in the Code group, click Stop Recording .

Tip You can also click Stop Recording on the left side of the status bar.

Notes

 If you chose to save the macro in This Workbook or New Workbook in step 6, save or move the

workbook into one of the XLStart folders.

 Recording an Auto_Open macro has the following limitations:

o If the workbook where you save the Auto_Open macro already contains a VBA procedure in

its Open event, the VBA procedure for the Open event will override all actions in the Auto_Open

macro.

o An Auto_Open macro is ignored when a workbook is opened programmatically by using

the Open method.

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 14

o An Auto_Open macro runs before any other workbooks open. Therefore, if you record actions that

you want Excel to perform on the default Book1 workbook or on a workbook that is loaded from the

XLStart folder, the Auto_Open macro will fail when you restart Excel, because the macro runs before

the default and startup workbooks open.

If you encounter these limitations, instead of recording an Auto_Open macro, you must create a VBA

procedure for the Open event as described in the next section of this article.

 If you want Excel to start without running an Auto_Open macro, hold down the SHIFT key when you start

Excel.

Create a VBA procedure for the Open event of a workbook

The following example uses the Open event to run a macro when you open the workbook.

1. If the Developer tab is not available, do the following to display it:

 Click the File tab, and then click Options.

 In the Customize Ribbon category, in the Main Tabs list, select the Developer check box, and then

click OK.

2. To set the security level temporarily to enable all macros, do the following:

 On the Developer tab, in the Code group, click Macro Security.

 In the Macro Settings category, under Macro Settings, click Enable all macros (not

recommended, potentially dangerous code can run), and then click OK.

Note To help prevent potentially dangerous code from running, we recommend that you return to any one of

the settings that disable all macros after you finish working with macros.

1. Save and close all open workbooks.

2. Open the workbook where you want to add the macro, or create a new workbook.

3. On the Developer tab, in the Code group, click Visual Basic.

4. In the Project Explorer window, right-click the ThisWorkbook object, and then click View Code.

Tip If the Project Explorer window is not visible, on the View menu, click Project Explorer.

5. In the Object list above the Code window, select Workbook.

This automatically creates an empty procedure for the Open event, such as this:

Private Sub Workbook_Open()

End Sub

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 15

6. Add the following lines of code to the procedure:

Private Sub Workbook_Open()

 MsgBox Date

 Worksheets("Sheet1").Range("A1").Value = Date

End Sub

7. Switch to Excel and save the workbook as a macro-enabled workbook (.xlsm).

8. Close and reopen the workbook. When you open the file again, Excel runs the Workbook_Open

procedure, which displays today's date in a message box.

9. Click OK in the message box.

Note that cell A1 on Sheet1 also contains the date as a result of running the Workbook_Open procedure

Setting Breakpoints in the Editor

You can set a breakpoint to suspend a macro that is running at a specific statement in the macro. Typically,

you set a breakpoint where you suspect a problem exists. You clear breakpoints when you no longer need

them to stop the macro

Setting Breakpoints

To set a breakpoint, use either of the following methods

Method 1:

1. Click anywhere in the line of code at which you want the macro to halt.

A flashing pointer appears

2. On the Debug menu, click Toggle Breakpoint (or press F9)

A breakpoint is defined for that line of code (provided that a breakpoint was not previously defined for the

line of code).

Method 2:

1. Right-click the line of code that contains the breakpoint.

2. On the shortcut menu, point to Toggle, and then click Breakpoint.

When you run this code, the macro halts on the first line of code that contains a breakpoint. Note that you can

use more than one breakpoint in a macro.

Clearing Breakpoints

1. Click anywhere in the line of code that contains the breakpoint you want to remove.

2. On the Debug menu, click Toggle Breakpoint (or press F9). The breakpoint is removed from the line of

code.

NOTE: Breakpoints are not saved with your code. So, you must configure breakpoints for every debugging

session

Using Break Mode

When your code pauses, for example, when it encounters a breakpoint, the macro is in break mode. Break

mode allows you to view the current condition of the macro. When a macro is in break mode, you can look at

the values of your variables. You can also step through the code one line at a time to trace the logic of the

macro.

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 16

Entering Break Mode

One method for entering break mode involves stepping through code from the beginning of the macro. To do

this, follow these steps:

1. Click the line of code that contains the first instruction of the macro

2. On the Debug menu, click Step Into.

An arrow appears to the left of the first line of code.

3. On the Debug menu, click Step Over

This step advances the arrow to the next instruction. If the instruction that is highlighted is a procedure

(function, sub, or property), using the Step Over command executes the procedure as a unit without

stepping through the code

To step through a procedure line by line, click Step Into

NOTE: The Debug menu commands are also available on the Debug toolbar.

Exiting Break Mode

To exit break mode, click Reset on the Run menu. This ends the break mode session.

Using ToolTips

When you use break mode, ToolTips indicate the current value of a specified variable

To see a sample value displayed in a ToolTip, follow these steps:

1. In a Visual Basic module, type the following sample subroutine:

Sub Test()

 Dim Name As String

 Name = "Kerry"

 Name = "Nancy"

End Sub

2. On the Debug menu, click Step Into (or press F8) to step through the subroutine

Click Step Into again until the Name = "Kerry" line is highlighted, and then move the pointer over the

Name variable

A ToolTip appears with the following text:

Name = ""

3. Press F8 to execute the line of code that assigns the Name variable

The Name = "Nancy" line should be highlighted

4. Move the pointer over the Name variable. A ToolTip appears with the following text:

Name = "Kerry"

Stepping Through Code

No. 9, 1
st
 Floor, 8

th
 Main, 9

th
 Cross, SBM Colony, Brindavan Nagar, Mathikere, Bangalore – 560 054 Page: 17

One of the first methods to debug code is to step through the code one line at a time. To step through code,

put the cursor on the first line of code to be analyzed and press F8 or choose Step Into on the Debug menu.

The next line of code to be executed will be displayed in yellow background with a black font.

Note that the highlighted line of code has not yet been executed -- it is the next line to execute.

If your code calls another procedure, stepping through the code with F8 will cause execution to enter the

called procedure in a line-by-line sequence. If you want to execute the called procedure without stepping

through it, press SHIFT F8. This will execute the called procedure and then pause on the line of code after

calling the procedure. If you are already stepping through a procedure, you can press CTRL F8 to resume

code execution line-by-line. At any time you are paused either in step-by-step mode or at a breakpoint (see

below), you can press F5 or Continue from the Run menu to cause VBA to run to completion or until a pause

statement is encountered.

Whenever you are paused in step-by-step mode, you can query or change a variable's value from the

immediate window

